Search results for "Lieb–Liniger model"

showing 2 items of 2 documents

Form factor approach to dynamical correlation functions in critical models

2012

We develop a form factor approach to the study of dynamical correlation functions of quantum integrable models in the critical regime. As an example, we consider the quantum non-linear Schr\"odinger model. We derive long-distance/long-time asymptotic behavior of various two-point functions of this model. We also compute edge exponents and amplitudes characterizing the power-law behavior of dynamical response functions on the particle/hole excitation thresholds. These last results confirm predictions based on the non-linear Luttinger liquid method. Our results rely on a first principles derivation, based on the microscopic analysis of the model, without invoking, at any stage, some correspon…

Statistics and ProbabilityHigh Energy Physics - TheoryIntegrable systemMinor (linear algebra)[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences01 natural sciencesGapless playbackLuttinger liquid0103 physical sciencesLieb–Liniger model[NLIN.NLIN-SI]Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI]Statistical physics010306 general physicsQuantumMathematical PhysicsPhysicsQuantum PhysicsNonlinear Sciences - Exactly Solvable and Integrable Systems010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Form factor (quantum field theory)Statistical and Nonlinear PhysicsMathematical Physics (math-ph)AmplitudeHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)Statistics Probability and UncertaintyExactly Solvable and Integrable Systems (nlin.SI)Quantum Physics (quant-ph)Condensed Matter - Quantum Gases
researchProduct

Variational Bethe ansatz approach for dipolar one-dimensional bosons

2020

We propose a variational approximation to the ground state energy of a one-dimensional gas of interacting bosons on the continuum based on the Bethe Ansatz ground state wavefunction of the Lieb-Liniger model. We apply our variational approximation to a gas of dipolar bosons in the single mode approximation and obtain its ground state energy per unit length. This allows for the calculation of the Tomonaga-Luttinger exponent as a function of density and the determination of the structure factor at small momenta. Moreover, in the case of attractive dipolar interaction, an instability is predicted at a critical density, which could be accessed in lanthanide atoms.

[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]Dipolar interactionsFOS: Physical sciences02 engineering and technologyGas atomici interagenti01 natural sciencesBethe ansatzVariational methods in quantum mechanicsCondensed Matter - Strongly Correlated ElectronsQuantum mechanics0103 physical sciencesLieb–Liniger model010306 general physicsWave function[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall]BosonPhysicsCondensed Matter::Quantum GasesLieb-Liniger modelStrongly Correlated Electrons (cond-mat.str-el)one dimensional bosonsFunction (mathematics)021001 nanoscience & nanotechnologyQuantum Gases (cond-mat.quant-gas)Exponent[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el]0210 nano-technologyStructure factorGround stateCondensed Matter - Quantum Gases
researchProduct